<meter id="hh1nh"></meter>
<th id="hh1nh"><em id="hh1nh"><delect id="hh1nh"></delect></em></th>

        <form id="hh1nh"></form>

          <listing id="hh1nh"><nobr id="hh1nh"></nobr></listing>
          <nobr id="hh1nh"></nobr>

            <th id="hh1nh"><form id="hh1nh"><font id="hh1nh"></font></form></th>
            <rp id="hh1nh"><progress id="hh1nh"></progress></rp>
            您現在的位置: 首頁- 科學研究- 科研成員- 專職科研人員

            梁天博 副研究員

            個人簡介:

             梁天博,男, 1986年4月生,博士,副研究員,校青年拔尖人才,博士生導師(可招收學術與工程博士)。

             研究領域:致密儲層滲流機理與化學提高采收率方法。

             所屬系所:儲層改造與開發工程研究所

             聯系方式:liangtianboo@163.com;btliang@cup.edu.cn


            教育經歷:

             2020-至今 中國石油大學(北京)非常規天然氣研究院,副研究員

             2017-2019 中國石油大學(北京)非常規天然氣研究院,助理研究員(青年拔尖人才)

             2012-2016 美國University of Texas at Austin,石油工程,博士

             2009-2011 美國University of California at Davis,材料科學與工程,碩士

             2005-2009 清華大學,材料科學與工程,學士


            科技獎勵:

            [1] 致密油氣藏兼顧強化縫網網系與儲層供給的納米增效壓裂技術與應用,中國石油和化學工業聯合會,科技進步一等獎(省部級),2022年,排名5/8。

            [2] 致密油藏高效壓裂與增能一體化技術及應用,中國石油和化工自動化應用協會,科技進步一等獎(省部級),2021年,排名1/15。

            [3] 準噶爾盆地西北緣開發區塊壓裂提產技術及工業化應用,新疆維吾爾自治區人民政府,科技進步二等獎(省部級),2021年,排名2/9。

            [4] 致密油氣藏高密均勻造縫耦合基質深度改性壓裂技術與應用,中國石油和化學工業聯合會,科技進步一等獎(省部級),2019年,排名7/15。


            主持基金項目:

            [1] 分離壓微尺度效應作用下的壓裂液滲吸提高采收率機理,國家自然科學基金面上項目,2023-2026。

            [2] 微支撐劑在粗糙微縫內的運移與支撐規律研究,國家能源頁巖油研發中心開放基金項目,2020-2021。

            [3] 納米乳液壓裂液提高 致密油藏采收率的機理探索,中國石油科技創新基金項目,2018-2020。

            [4] 致密油儲層的水鎖 機理與表面活性劑體系輔助返排的優選研究,校青年拔尖人才科研啟動基金項目,2017-2020。


            期刊文章:

            【第一作者】

            [1] Liang, T., Zhao, X., Yuan, S., Zhu, J., Liang, X., Li, X., Zhou, F., 2021. Surfactant-EOR in Tight Oil Reservoirs: Current Status and a Systematic Surfactant Screening Method with Field Experiments. J. Pet. Sci. Eng. 196. https://doi.org/10.1016/j.petrol.2020.108097

            [2] Liang, T., Wei, D., Zhou, F., Li, X., Yuan, L., Wang, B., Lu, J., 2020. Field Experiments on Multi-Stage Chemical Diversion in Low-Permeability HPHT Reservoirs. J. Pet. Sci. Eng. 187. https://doi.org/10.1016/j.petrol.2019.106738

            [3] Liang, T., Xu, K., Lu, J., Nguyen, Q., DiCarlo, D., 2020. Evaluating the Performance of Surfactants in Enhancing Flowback and Permeability after Hydraulic Fracturing through a Microfluidic Model. SPE J. 25, 268–287. https://doi.org/10.2118/199346-PA

            [4] Liang, T., Li, Q., Liang, X., Yao, E., Wang, Y., Li, Y., Chen, M., Zhou, F., Lu, J., 2018. Evaluation of Liquid Nanofluid as Fracturing Fluid Additive on Enhanced Oil Recovery from Low-Permeability Reservoirs. J. Pet. Sci. Eng. 168, 390–399. https://doi.org/10.1016/j.petrol.2018.04.073

            [5] Liang, T., Luo, X., Nguyen, Q., DiCarlo, D.A., 2018. Computed-Tomography Measurements of Water Block in Low-Permeability Rocks: Scaling and Remedying Production Impairment. SPE J. 23, 762–771. https://doi.org/10.2118/189445-PA

            [6] Liang, T., Shao, L., Yao, E., Zuo, J., Liu, X., Zhang, B., Zhou, F., 2018. Study on Fluid-Rock Interaction and Reuse of Flowback Fluid for Gel Fracturing in Desert Area. Geofluids. https://doi.org/10.1155/2018/8948961

            [7] Liang, T., Zhou, F., Shi, Y., Liu, X., Wang, R., Li, B., Li, X., 2018. Evaluation and Optimization of Degradable-Fiber-Assisted Slurry for Fracturing Thick and Tight Formation with High Stress. J. Pet. Sci. Eng. 165, 81–89. https://doi.org/10.1016/j.petrol.2018.02.010

            [8] Liang, T., Achour, S.H., Longoria, R.A., DiCarlo, D.A., Nguyen, Q.P., 2017. Flow Physics of How Surfactants Can Reduce Water Blocking Caused by Hydraulic Fracturing in Low Permeability Reservoirs. J. Pet. Sci. Eng. 157, 631–642. https://doi.org/10.1016/j.petrol.2017.07.042

            [9] Liang, T., Gu, F., Yao, E., Zhang, L., Yang, K., Liu, G., Zhou, F., 2017. Formation Damage due to Drilling and Fracturing Fluids and Its Solution for Tight Naturally Fractured Sandstone Reservoirs. Geofluids. https://doi.org/10.1155/2017/9350967

            [10] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., 2017. Enhancing Hydrocarbon Permeability After Hydraulic Fracturing: Laboratory Evaluations of Shut-Ins and Surfactant Additives. SPE J. 22, 1,011-1,023. https://doi.org/10.2118/175101-PA

            [11] Liang, T., Yang, Z., Zhou, F., Liu, Z., Qu, H., Yang, K., Sun, J., 2017. A New Approach to Predict Field-Scale Performance of Friction Reducer Based on Laboratory Measurements. J. Pet. Sci. Eng. 159, 927–933. https://doi.org/10.1016/j.petrol.2017.09.076

            [12] Liang, T., Zhou, F., Lu, J., DiCarlo, D., Nguyen, Q., 2017. Evaluation of Wettability Alteration and IFT Reduction on Mitigating Water Blocking for Low-Permeability Oil-Wet Rocks after Hydraulic Fracturing. Fuel 209, 650–660. https://doi.org/10.1016/j.fuel.2017.08.029

            [13] 梁天博, 蘇航, 昝晶鴿, . 變黏滑溜水性能評價及吉木薩爾頁巖油藏礦場應用. 石油科學通報, 2022, 02: 185-195

            [14] 梁天博, 馬實英, 魏東亞, . 低滲透油藏水鎖機理與助排表面活性劑的優選原則. 石油學報, 2020, 41(06): 745-752.

            [15] 梁天博, 梁星原, 王洪達, . 致密氣藏中防水鎖劑的篩選方法及其微觀機理. 科學技術與工程, 2020, 20(28): 11568-11573.

            【非一作篩選】

            [1] Su, H., Zhou, F., Wang, Q., Yu, F., Dong, R., Xiong, C., Li, J., Liang, T., 2021. Flow Physics of Polymer Nanospheres and Diluted Microemulsion in Fractured Carbonate Reservoirs: An Investigation into Enhanced Oil Recovery Mechanisms. SPE J. 26, 2231–2244. https://doi.org/10.2118/205381-PA

            [2] Wang, B., Zhou, F., Yang, C., Wang, D., Yang, K., Liang, T., 2020. Experimental Study on Injection Pressure Response and Fracture Geometry during Temporary Plugging and Diverting Fracturing. SPE J. 25, 573–586. https://doi.org/10.2118/199893-PA

            [3] Zhou, F., Su, H., Liang, X., Meng, L., Yuan, L., Li, X., Liang, T., 2019. Integrated Hydraulic Fracturing Techniques to Enhance Oil Recovery from Tight Rocks. Pet. Explor. Dev. 46, 1065–1072. https://doi.org/10.1016/S1876-3804(19)60263-6

            [4] Xu, K., Liang, T., Zhu, P., Qi, P., Lu, J., Huh, C., Balhoff, M., 2017. A 2.5-D Glass Micromodel for Investigation of Multi-Phase Flow in Porous Media. Lab. Chip 17, 640–646. https://doi.org/10.1039/c6lc01476c

            [5] Longoria, R.A., Liang, T., Huynh, U.T., Nguyen, Q.P., DiCarlo, D.A., 2017. Water Blocks in Tight Formations: The Role of Matrix/Fracture Interaction in Hydrocarbon-Permeability Reduction and Its Implications in the Use of Enhanced Oil Recovery Techniques. SPE J. 22, 1,393-1,401. https://doi.org/10.2118/185962-PA


            【博士論文】

                Water Block from Hydraulic Fracturing in Low Permeability Rocks: Experimental Studies on Causes and Potential Mitigation Methods. The University of Texas at Austin, 2016.

             下載地址:https://repositories.lib.utexas.edu/handle/2152/45848


            部分SPE會議文章:

            [1] Liang, T., Achour, S.H., Longoria, R.A., DiCarlo, D.A., Nguyen, Q.P., 2016. Identifying and Evaluating Surfactant Additives to Reduce Water Blocks after Hydraulic Fracturing for Low Permeability Reservoirs. Presented at the SPE Improved Oil Recovery Conference, Society of Petroleum Engineers. https://doi.org/10.2118/179601-MS

            [2] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., 2015. Enhancing Hydrocarbon Permeability After Hydraulic Fracturing: Laboratory Evaluations of Shut-ins and Surfactant Additives. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. https://doi.org/10.2118/175101-MS

            [3] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., Huynh, U.T., 2015. The Applicability of Surfactants on Enhancing the Productivity in Tight Formations. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/URTEC-2015-2154284

            [4] Liang, X., Zhou, F., Liang, T., Wang, R., Su, H., Wang, X., 2020. Application of Liquid Nanofluid during Hydraulic Fracturing in Tight Reservoirs. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-2899

            [5] Zhao, X., Liang, T., Zhou, F., Yuan, S., Liang, X., 2020. Adsorption and Dispersion of Diluted Microemulsions in Tight Rocks. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-2101

            [6] Yuan, S., Liang, T., Zhou, F., Liang, X., Yu, F., Li, J., 2019. A Microfluidic Study of Wettability Alteration Rate on Enhanced Oil Recovery in Oil-Wet Porous Media. Presented at the Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers. https://doi.org/10.2118/197715-MS

            [7] Longoria, R.A, Liang, T., Nguyen, Q.P., DiCarlo, D.A., 2015. When Less Flowback Is More: A Mechanism of Permeability Damage and its Implications on the Application of EOR Techniques. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/URTEC-2015-2154266


            授權發明專利(第一發明人):

            [1] 一種基于儲層暫堵的施工方法及裝置(CN202011155131.9

            [2] 一種基于分流模型與CT掃描的相對滲透率測定系統及方法CN202110560922.8

            [3] 粗糙水力裂縫內支撐劑參數的確定方法、裝置和設備(202010601935.0

            [4] 一種碳酸鹽巖儲層微觀模型及其制備方法和應用(CN202011517063.6

            [5] 一種支撐劑沉降速率測量裝置(CN202110381563.X

            [6] 一種低滲透巖石的相對滲透率測定系統及方法(CN202110550003.2

            [7] 一種模擬致密油藏微觀模型制作方法(ZL201810839747.4

            [8] 一種致密儲層均勻改造方法及系統(ZL201910661211.2

            [9] 一種基于極限限流設計的壓裂方法及系統(ZL201910661839.2




            99亚洲综合精品