<meter id="hh1nh"></meter>
<th id="hh1nh"><em id="hh1nh"><delect id="hh1nh"></delect></em></th>

        <form id="hh1nh"></form>

          <listing id="hh1nh"><nobr id="hh1nh"></nobr></listing>
          <nobr id="hh1nh"></nobr>

            <th id="hh1nh"><form id="hh1nh"><font id="hh1nh"></font></form></th>
            <rp id="hh1nh"><progress id="hh1nh"></progress></rp>
            您現在的位置: 首頁- 科學研究- 科研成員- 專職科研人員

            楊鈺龍 副研究員


            楊鈺龍

            副研究員(副教授) 博士/碩士導師

            Petroleum Science 副主編

            辦公室:新綜合樓北樓A310

            郵箱:yulong.yang@cup.edu.cn


            個人簡介

            2017年獲得澳大利亞阿德萊德大學石油工程專業博士學位,2017年6月至今在中國石油大學(北京)非常規油氣科學技術研究院工作,主要從事提高采收率相關的多相多組分流動及表/界面現象的研究。


            研究方向

            多相多組分流動;表/界面現象

            歡迎認真、踏實、對基礎研究有濃厚興趣和強烈好奇心的同學加入課題組,一起探索未知。


            教育背景

            2012.09-2016.09,博士,澳大利亞阿德萊德大學,石油工程

            2009.09-2012.06,碩士,中國石油大學(北京),油氣井工程

            2005.09-2009.06,學士,中國石油大學(北京),石油工程


            工作經歷

            2022.07至今,副研究員,中國石油大學(北京)非常規油氣科學技術研究院

            2017.06-2022.06,助理研究員,中國石油大學(北京)提高采收率研究院


            科研項目

            [1]  國家自然基金面上項目,致密砂巖油藏CO2納米氣泡流體滲吸驅油微觀機理及數學表征,2025.01-2028.12. (主持)

            [2]  國家自然基金青年項目,低滲油藏納米聚合物微球與低礦化度水復合深部調驅機理研究,2019.01-2021.12. (主持)

            [3]  頁巖氣水平井井筒完整性失效機理與控制方法研究,國家自然聯合基金重點項目,2018-2021. (參與)

            [4]  低滲/特低滲油藏片狀納米材料-微米自適應橋接顆粒協同控竄-調流-驅油理論研究,國家自然基金面上項目,2022-2025. (參與)

            [5]  表面活性劑在致密油藏裂縫-微納米孔隙的多尺度滲析機理研究,國家自然基金面上項目,2019-2022. (參與)

            [6]  頁巖油儲層納微米孔喉中油-CO2-水多元體系相行為與流動機制研究,國家自然基金面上項目,2021-2024. (參與)

            [7]  低滲/特低滲油藏片狀納米材料-微米自適應橋接顆粒協同調驅機理研究,國家自然基金面上項目,2022-2025. (參與)

            [8]  雙親納米流體制備及其提高采收率機理研究,中石油創新基金,2021-2022. (參與)

            [9]  強非均質礫巖油藏CO2吞吐機理與方案優化研究,中石油戰略合作項目專題任務,2020-2024. (專題負責人)

            [10] 低滲/特低滲油藏微/納米功能材料深部調驅機理研究,中國石油大學(北京)科研啟動基金,2017-2020. (主持)

            [11] CO2驅氣水交替WAG變比設計及測試,中石化勝利油田勘探開發研究院,2020.(負責)

            [12] 二氧化碳驅混相驅波及物理模擬測試合同,中石化勝利油田勘探開發研究院,2020.(負責)

            [13] 單井吞吐注氣物理模擬實驗,中石化石油勘探開發研究院,2017-2018.(負責)

            [14] 縫洞型油藏井間氣竄影響因素實驗研究,中石化石油勘探開發研究院,2017-2018.(負責)


            發表論文

            期刊論文

            [1]     Water impact on adsorbed oil detachment from mineral surfaces by supercritical CO2: A molecular insight. Geophysical Research Letters, 51(9), p.e2024GL108208. (自然指數期刊,中科院1TOP, 2022-2023影響因子: 5.2)

            [2]     Impact of temperature and salinity on fines detachment: AFM measurements and XDLVO theory. Petroleum Science, 2024 (In Press 中科院1TOP, 2022-2023影響因子: 5.6)

            [3]     Review on Physical and Chemical Factors Affecting Fines Migration in Porous Media. Water Research, 2022, 214, 118172. (自然指數期刊,中科院1TOP, 2022-2023影響因子: 13.4)

            [4]     Similarity-based Laboratory study on CO2 huff-n-puff in tight conglomerate cores. Petroleum Science. 2022, 20(1), 362-369. (中科院1TOP, 2022-2023影響因子: 5.6)

            [5]     Morphology of MoS2 nanosheets and its influence on water/oil interfacial tension: A molecular dynamics study. Fuel, 2022, 312, 122938. (中科院1TOP, 2022-2023影響因子: 7.4)

            [6]     A Novel Polymer Gel with High-Temperature and High-Salinity Resistance for Conformance Control in Carbonate Reservoirs. Petroleum Science. 2022, 19(6), 3159-3170. (In Press,中科院1TOP, 2022-2023影響因子: 5.6)

            [7]     Oil Displacement Performance Using Bilayer-Coating Microspheres. Industrial & Engineering Chemistry Research, 2021, 60(5): 2300-2313. (中科院3, 2020-2021影響因子: 3.720)

            [8]     The effect of nanoparticles on reservoir wettability alteration: a critical review. Petroleum Science, 2021, 18, 136-153. (中科院1TOP, 2020-2021影響因子: 4.090)

            [9]     Profile Control Using Fly Ash Three-Phase Foam Assisted by Microspheres with an Adhesive Coating. Applied Sciences, 2021, 11(8), 3616. (中科院3, 2020-2021影響因子: 2.679)

            [10] Study on the Impact Pressure of Swirling-Round Supercritical CO2 Jet Flow and Its Influencing Factors. Energies, 2021, 14(1), 106. (中科院3, 2020-2021影響因子: 3.004)

            [11] Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection. Applied Mathematics and Mechanics, 2020, 41(3), 491-506. (中科院1TOP, 2020-2021影響因子: 2.866)

            [12] Enhanced Oil Recovery Using Oleic Acid-Modified Titania Nanofluids: Underlying Mechanisms and Oil-Displacement Performance. Energy & Fuels, 2020, 34(5), 5813-5822. (中科院3, 2020-2021影響因子: 3.605)

            [13] Kaolinite Detachment from Silica Substrate - Laboratory and Theoretical Study. International Journal of Water and Wastewater Treatment, 2020, 6(3), 1-7.

            [14] Synthesis of α-starch based nanogel particles and its application for long-term stabilizing foam in high-salinity, high-temperature and crude oil environment. Journal of Petroleum Science and Engineering, 2020, 191, 107185. (中科院2TOP, 2020-2021影響因子: 4.346)

            [15] Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs: karst fault system. Petroleum Science, 2020, 17(2), 419-433. (中科院1TOP, 2020-2021影響因子: 4.090)

            [16] Study on the plugging performance of bilayer-coating microspheres for in-depth conformance control: experimental study and mathematical modeling. Industrial & Engineering Chemistry Research, 2019, 58(16), 6796-6810. (中科院3, 2020-2021影響因子: 3.720)

            [17] Fines migration in geothermal reservoirs: Laboratory and mathematical modelling. Geothermics, 2019, 77:344-67. (中科院2, 2020-2021影響因子: 4.284)

            [18] Exact Solutions for Nonlinear High Retention-Concentration Fines Migration. Transport in Porous Media, 2017, 119(2):351-372. (中科院3, 2020-2021影響因子: 3.019)

            [19] Slow migration of detached fine particles over rock surface in porous media. Journal of Natural Gas Science and Engineering, 2016, 34:1159-1173. (中科院2, 2020-2021影響因子: 4.965)

            [20] Mathematical modelling of fines migration in geothermal reservoirs. Geothermics, 2016, 59: 123-133. (中科院2, 2020-2021影響因子: 4.284)

            [21] Deep bed and cake filtration of two-size particle suspension in porous media. Journal of Petroleum Science and Engineering, 2015, 126:201210. (中科院2TOP, 2020-2021影響因子: 4.346)

            [22] Laboratory-based mathematical modelling of graded proppant injection in CBM reservoirs. International Journal of Coal Geology, 2014, 136:1-16. (中科院1TOP, 2020-2021影響因子: 6.806)

            [23] Slow migration of mobilised fines during flow in reservoir rocks: Laboratory study. Journal of Petroleum Science and Engineering, 2014, 122, 534-541. (中科院2TOP, 2020-2021影響因子: 4.346)

            [24] Modeling the pressure characteristics of parallel chokes used in managed pressure drilling and related experiments. Petroleum Science, 2012, 9(3): 363-369. (中科院1TOP, 2020-2021影響因子: 4.090)

            會議論文

            [1] A New Phenomenon of Slow Fines Migration in Oil and Gas Fields (Laboratory and Mathematical Modelling). SPE-179027-MS. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2016.02.24-02.26

            [2] Fines Mobilisation by Low-Salinity Water Injection: 3-Point-Pressure Tests. SPE-178947-MS. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2016.02.24-02.26

            [3] New Laboratory Method to Assess Formation Damage in Geothermal Wells. SPE-174199-MS. SPE European Formation Damage Conference held in Budapest, Hungary, 2015.06.03-06.05

            [4] Modelling of productivity decline in geothermal reservoirs due to fines migration induced formation damage. World Geothermal Congress, Melbourne, Australia, 2015.04.19-04.25

            [5] Prediction of Productivity Decline in Oil and Gas Wells Due to Fines Migration: Laboratory and Mathematical Modelling. SPE-171475-MS. SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, 2014.10.14-10.16

            合作出版專著

            [1] Fines Migration in Aquifers and Oilfields: Laboratory and Mathematical Modelling. Flow and Transport in Subsurface Environment (2018): 3-67. (Springer)

            [2] New Development of Air and Gas Drilling Technology. In Drilling. 2018, 163 (IntechOpen).

            [3] Formation Damage Challenges in Geothermal Reservoirs. In Formation Damage During Improved Oil Recovery (2018): 447-497. (Elsevier)





            99亚洲综合精品