賈趵,中國石油大學(北京)副研究員、博士生導師,2020年入選學校優秀青年學者培育計劃。2018年畢業于美國堪薩斯大學(University of Kansas),化學與石油工程專業,獲Frank Bowdish Outstanding Ph.D. Award。曾于美國北達科他大學(University of North Dakota)石油工程系擔任助理教授、博士生導師;于美國環境與能源研究中心(Energy & Environmental Research Center)擔任二級油藏工程師,主持/參與美國能源部與州政府非常規油氣田開發相關項目多項。研究方向為非常規油氣田開發與提高采收率,包括多孔介質滲流理論、地質工程一體化立體開發理論、超低滲流體相態與流動實驗和模擬、二氧化碳提高采收率與碳埋存等,曾受聘擔任美國德州大學奧斯汀分校(The University of Texas at Austin)石油與地質系統工程系提高采收率實驗室主管。以第一作者身份在SPE Journal、 SPE Reservoir Evaluation & Engineering等期刊發表論文20余篇,SPE等會議論文10余篇;擔任多個SCI期刊青年編委、客座編輯和審稿人工作。
郵箱:baojia90@cup.edu.cn; baojia90@gmail.com
谷歌學術主頁:https://scholar.google.com/citations?user=1yKiWgsAAAAJ&hl=en
【招生專業】:
& 學術型碩士:石油與天然氣工程082000
& 專業型碩士:石油與天然氣工程085706
& 學術博士:石油與天然氣工程082000
& 工程博士:資源與環境085706
【教育背景】:
& 2014-08至2018-12 University of Kansas(美國) 博士
& 2012-06至2014-08 New Mexico Institute of Mining and Technology(美國) 石油與天然氣工程 碩士
& 2008-08至2012-06 中國石油大學(華東) 油氣儲運工程 學士
【研究方向】:
& 頁巖油氣、致密油氣和油頁巖高效開發
& 二氧化碳提高采收率與碳埋存
& 地層儲能與地熱開發
【主要榮譽和獎勵】:
& 全球前2%頂尖科學家
& 中國發明協會創新獎二等獎
& 中國石油大學(北京)優秀青年學者
& SPE Journal杰出審稿人獎
& Frank Bowdish Outstanding PhD Award
【工作經歷】:
& 2021-04至今 中國石油大學(北京) 副研究員
& 2020-08至2020-12 北達科他大學(University of North Dakota)石油工程系(美國) 助理教授
& 2019-03至2020-08 能源與環境研究中心(Energy & Environmental Research Center)(美國) 油藏工程師
【科研項目】:
[15] 國家自然科學基金面上基金,5247040153,超臨界水原位轉化油頁巖機理研究,2025-2028,48萬,在研,主持
[14] 長慶油田分公司勘探開發研究院,2023年2023-2024年油藏評價頁巖油攻關試驗區效果評價,2023-2024,53萬,在研,參與、第二負責人
[13] 中國石油天然氣股份有限公司西南油氣田分公司勘探開發研究院,金秋區塊致密河道砂巖地質工程一體化建模及EUR主控因素研究,2023-2024,29.7萬,在研,主持
[12] 中國石油天然氣股份有限公司勘探開發研究院,頁巖油國內外技術調研及分析研究,2023-2024,34.8萬,結題,主持
[11] 中國石油化工股份有限公司石油勘探開發研究院,油頁巖原位開采止水一體化方法及機理研究,2022-2024,29.5萬,在研,主持
[10] 大慶油田有限責任公司和黑龍江省科技廳,古龍頁巖油提高采收率關鍵問題研究,2021-2025,971.805萬,在研,參與
[9] 中石油戰略合作科技專項-準噶爾盆地瑪湖中下組合和吉木薩爾陸相頁巖油高效勘探開發理論及關鍵技術研究,均衡壓裂與氣驅/吞吐一體化提產技術及效果評估研究,2019-2024,9310萬,在研,參與、專題負責人
[8] 中央高?;究蒲谢?,2462021QNXZ004,頁巖巖石物理特性的多尺度測量和模擬,2021-2024,60w,在研,主持
[7] 美國能源部Department of Energy,Subtask 3.1 - Bakken Rich Gas Enhanced Oil Recovery,2020-2020,~$3,000,000,結題,參與
[6] 美國北達科他州State Energy Research Center (SERC),Crude Oil Swelling with Injected Produced Gas and CO2 as a Potential Mechanism for Enhanced Oil Recovery (EOR) in the Bakken,2019-2020,$117,611,結題,主持
[5] 美國北達科他州North Dakota Pipeline Authority和North Dakota Industrial Commission,Assessment of Bakken and Three Forks Natural Gas Compositions,2019-2020,$300,650,結題,參與
[4] 美國北達科他州North Dakota Industrial Commission,Underground Storage of Produced Natural Gas – Conceptual Evaluation and Pilot Project(s),2019-2021,~$6,000,000,結題,參與
[3] 馬拉松石油公司Marathon Petroleum Corporation(美國),Evaluation and Quantification of CO2 Sorption in Bakken Shale and Interactions Between C02 and Three Forks Rock and Brine,2019-2020,$525,000,結題,參與
[2] 切薩皮克能源公司Chesapeake Energy(美國),Gas Huff and Puff to improve oil recovery in the Eagle Ford,2016-2018,~$110,000,結題,參與
[1] 美國能源部Department of Energy,Nanoparticle-Stabilized CO2 Foam for CO2 EOR Application,2010-2015,$ $1,158,822,結題,參與
【部分一作/通訊期刊論文】:
[23] 超低滲致密砂巖和頁巖儲層滲流能力瞬態法評價進展,石油科學通報,2024, 9(4), 659-678.
[22] Oil Shale In Situ Production Using a Novel Flow-Heat Coupling Approach. ACS omega, 2024, 9(7), 7705-7718.
[21] Machine learning and UNet++ based microfracture evaluation from CT images. Geoenergy Science and Engineering, 2023, 226, 211726.
[20] Improved Petrophysical Property Evaluation of Shaly Sand Reservoirs Using Modified Grey Wolf Intelligence Algorithm. Computational Geosciences, 2023, 27(4), 537-549.
[19] Status and outlook of oil field chemistry-assisted analysis during the energy transition period. Energy & Fuels, 2022, 36(21), 12917-12945.
[18] Mechanistic Understanding of Delayed Oil Breakthrough in Near-Critical Point Shale Oil Reservoirs. In SPE Eastern Regional Meeting (p. D031S005R003). 2022. SPE.
[17] Permeability measurement of the fracture-matrix system with 3D embedded discrete fracture model. Petroleum Science, 2022, 19(4), 1757-1765. (高被引論文)
[16] Investigations of CO2 storage capacity and flow behavior in shale formation. Journal of Petroleum Science and Engineering, 2021, 208, 109659.
[15] Pore pressure dependent gas flow in tight porous media. Journal of Petroleum Science and Engineering, 2021, 205, 108835.
[14] Extension of the Gas Research Institute (GRI) method to measure the permeability of tight rocks. Journal of Natural Gas Science and Engineering, 2021, 91, 103756.
[13] Intelligent materials in unconventional oil and gas recovery. In Sustainable Materials for Oil and Gas Applications (pp. 175-206). 2020, Gulf Professional Publishing.
[12] An integrated approach of measuring permeability of naturally fractured shale. Journal of Petroleum Science and Engineering, 2020, 186, 106716.
[11] Carbonated water injection (CWI) for improved oil recovery and carbon storage in high-salinity carbonate reservoir. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 82-93.
[10] Revisiting approximate analytical solutions of estimating low permeability using the gas transient transmission test. Journal of Natural Gas Science and Engineering, 2019, 72, 103027.
[9] Investigation of shale-gas-production behavior: evaluation of the effects of multiple physics on the matrix. SPE Reservoir Evaluation & Engineering, 2019, 23(01), 068-080.
[8] Measurement of CO2 diffusion coefficient in the oil-saturated porous media. Journal of Petroleum Science and Engineering, 2019, 181, 106189.
[7] Multiphysical flow behavior in shale and permeability measurement by pulse-decay method. In Petrophysical characterization and fluids transport in unconventional reservoirs (pp. 301-324). 2019, Elsevier.
[6] A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 2019, 236, 404-427. (高被引、熱點論文)
[5] Insights into the Gas Transmission Test at Multiscale Based on Discrete-Fracture Model and History Matching. In SPE Eastern Regional Meeting (p. D033S004R005). 2018. SPE.
[4] Experimental and numerical investigations of permeability in heterogeneous fractured tight porous media. Journal of Natural Gas Science and Engineering, 2019, 58, 216-233.
[3] Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. Journal of Petroleum Science and Engineering, 164, 31-42.
[2] A workflow to estimate shale gas permeability variations during the production process. Fuel, 220, 879-889.
[1] Different flow behaviors of low-pressure and high-pressure carbon dioxide in shales. SPE Journal, 23(04), 1452-1468.