姓名: 盧運虎
職稱: 教授、博導
教育與工作經歷:
2002-2006 長江大學(原江漢石油學院) 本科
2006-2011 中國石油大學(北京)碩博連讀 博士
2011-2013 塔里木油田博士后工作站 師資博士后
2013-2015 中國石油大學(北京) 教師
2015-至今 中國石油大學(北京) 副教授
2019.2-12 Curtin University 訪問學者
電子郵箱: luyh@cup.edu.cn/luyunhu20021768@163.com
聯系電話: 010-89732165
所在系所: 油氣井工程系
研究方向: 石油工程巖石力學、井壁穩定、水力壓裂、井筒完整性等
教學情況:本科生《鉆井工程》、研究生《石油工程巖石力學》、《鉆井工程實踐與案列分析》
論文著作:
(一)期刊論文:
[1]Role of brine composition on rock surface energy and its implications for subcritical crack growth in calcite[J]. Journal of Molecular Liquids, 2020,303: 112638.
[2]Wetting Behavior of Shale Rocks and Its Relationship to Oil Composition[J]. Energy & Fuels, 2019, 33(12): 12270-12277.
[3]Characterization of Shale Softening by Large Volume-Based Nanoindentation[J]. Rock Mechanics and Rock Engineering, 2019: 1-17.
[4]Analytical modelling of wettability alteration-induced micro-fractures during hydraulic fracturing in tight oil reservoirs[J]. Fuel, 2019, 249: 434-440.
[5]Effect of Shale Anisotropy on Hydration and Its Implications for Water Uptake[J]. Energies, 2019, 12(22): 4225.
[6]Predicting seismic-based risk of lost circulation using machine learning[J]. Journal of Petroleum Science and Engineering, 2019, 176: 679-688.
[7]The influence of barrier coastal sedimentary system lost circulation in sandstone[J]. Journal of Petroleum Science and Engineering, 2019: 106654
[8]Comments on the mode II fracture from disk-type specimens for rock-type materials[J]. Engineering Fracture Mechanics, 2019, 211: 303-320.
[9]Nonlinear Stress-Strain Model for Confined Well Cement[J]. Materials, 2019, 12(16): 2626.
[10]Unifying acoustic emission and digital imaging observations of quasi-brittle fracture[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102301.
[11]Interpreting Water Uptake by Shale with Ion Exchange, Surface Complexation, and Disjoining Pressure[J]. Energy & Fuels, 2019, 33(9): 8250-8258.
[12]Effect of local thermal non-equilibrium on thermoporoelastic response of a borehole in dual-porosity media[J]. Applied Thermal Engineering, 2018, 142: 166-183.
[13]An Analytical Solution for Pseudosteady-State Flow in a Hydraulically Fractured Stratified Reservoir With Interlayer Crossflows[J]. SPE Journal, 2017, 22(04): 1,103-1,111.
[14]Dynamic analysis of a cylindrical casing–cement structure in a poroelastic stratum[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(12): 1362-1389.
[15]Productivity-Index optimization for hydraulically fractured vertical wells in a circular reservoir: a comparative study with analytical solutions[J]. SPE Journal, 2016, 21(06): 2,208-2,219.
[16]Experimental study and artificial neural network simulation of the wettability of tight gas sandstone formation[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 387-400.
[17]A wellbore stability model for a deviated well in a transversely isotropic formation considering poroelastic effects[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3671-3686.
[18]Theoretical and experimental study on the penetration rate for roller cone bits based on the rock dynamic strength and drilling parameters[J]. Journal of natural gas science and engineering, 2016, 36: 117-123.
[19]Oil-based critical mud weight window analyses in HTHP fractured tight formation[J]. Journal of Petroleum Science and Engineering, 2015, 135: 750-764.
[20]Calculation model for borehole collapse volume in horizontal openhole in formation with multiple weak planes[J]. Petroleum Exploration and Development, 2014, 41(1): 102-107.
[21]Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 364-378.
[22]Multilayer pressure containment model and its application in deep well fractured formation[J]. Rock mechanics and rock engineering, 2013, 46(5): 1255-1266.
[23]A Mechanical Model of Borehole Stability for Weak Plane Formation under Porous Flow. Petroleum Science & Technology[J],2012,30(15):1629-1638.
[24]Influence of Porous Flow on Wellbore Stability for Inclined Well in Weak Plane Formation Petroleum science & Technology[J],2012,30(17):616-624.
[25]The Development and Application of an Environmentally Friendly Encapsulator EBA-20. Petroleum Science & Technology[J],2012,30(21): 2227-2235
[26]The study on instability mechanism of fractured reservoir during well test for horizontal well[J]. Petroleum science & Technology, 2012,30(22):637-643.
[27]Experimental study on the performance of sand control screens for gas wells[J]. Journal of petroleum exploration and production technology, 2012, 2(1): 37-47.EI
[28]Analysis of the vertical borehole stability in anisotropic rock formations[J]. Journal of Petroleum Exploration and Production Technology, 2012, 2(4): 197-207.EI
[29]Salt-gypsum bed complicates Tarim horizontal drilling[J]. Oil & gas journal, 2011, 109(11).
[30]Determination of rock fracture toughness K_IIC and its relationship with tensile strength[J]. Rock mechanics and rock engineering, 2011, 44(5): 621.
[31]Analysis of the external pressure on casings induced by salt-gypsum creep in build-up sections for horizontal wells[J]. Rock mechanics and rock engineering, 2011, 44(6): 711.
[32]高溫熱處理共和盆地干熱巖力學特性實驗研究[J].地下空間與工程學報,2020,16(1):114-121.
[33]深層頁巖氣藏粘土礦物水巖作用微觀機制[J].地球化學,2020,49(2).
[34]高溫高壓耦合下含不同傾角充填縫砂巖的強度實驗研究[J].巖石力學與工程學報,2019,38(S1):2668-2679.
[35]高溫下頁巖水化損傷的各向異性實驗研究[J].中國科學:物理學 力學 天文學,2017,47(11):138-145.
[36]各向異性地層中斜井井壁失穩機理[J].石油學報,2013,34(03):563-568.
[37]頁巖氣井脆性頁巖井壁裂縫擴展機理[J].石油鉆探技術,2012,40(04):13-16.
[38]鉆井液浸泡下深部泥巖強度特征試驗研究[J].巖石力學與工程學報,2012,31(07):1399-1405.
[39]碳酸鹽巖聲發射地應力測量方法實驗研究[J].巖土工程學報,2011,33(08):1192-1196.
[40]山前淺部鹽層斷層附近套管損壞分析[J].石油鉆采工藝,2011,33(03):109-112.
[41]深層地應力地理方位確定的新方法[J].巖石力學與工程學報,2011,30(02):233-237.
[42]南海西江油田古近系泥頁巖地層防塌鉆井液技術[J].石油鉆探技術,2019,47(06):40-47.
[43]超深井筒溫度分布及其對圍巖力學性質的影響研究[J].巖石力學與工程學報,2019,38(S1):2831-2839.
[44]川南深層頁巖各向異性特征及對破裂壓力的影響[J].石油鉆探技術,2018,46(03):78-85.
[45]密地層井壁失穩的孔隙彈性動力學機理研究[J].石油科學通報,2017,2(04):478-489.
[46]頁巖氣開發:巖石力學的機遇與挑戰[J].中國科學:物理學 力學 天文學,2017,47(11):6-18.
[47]復合鹽膏層界面錯動的變形機理及數值模擬研究[J].石油科學通報,2019,4(04):390-402.
[48]基于近鉆頭振動數據的海底硬質地層探測方法[J].船海工程,2019,48(04):112-116.
[49]三維頁巖儲層多重壓力流固耦合模型研究[J].中國科學:物理學 力學 天文學,2019,49(01):40-52.
[50]頁巖潤濕性的神經網絡預測模型[J].斷塊油氣田,2018,25(06):726-731.
[51]干熱巖地熱儲層鉆井和水力壓裂工程技術難題和攻關建議[J].中國科學:物理學 力學 天文學,2018,48(12):97-102.
[52]溫壓條件下蒙脫石水化的分子動力學模擬[J].硅酸鹽學報,2018,46(10):1489-1498.
[53]縫網頁巖儲層非線性耦合滲流模型研究[J].中國科學:物理學 力學 天文學,2018,48(06):98-112.
[54]加載方式對水泥石氣密封性影響研究[J].石油鉆探技術,2018,46(01):55-61.
[55]非均勻應力場中井筒卸載過程井壁圍巖孔隙彈性動力響應機制[J].巖石力學與工程學報,2018,37(05):1115-1125.
[56]塔里木盆地玉科區塊超深井膏鹽層段套管損壞機理與防治措施[J].天然氣工業,2016,36(12):92-99.
[57]沖擊作用下巖石裂紋長度預測模型及數值模擬研究[J].石油鉆探技術,2016,44(04):41-46.
[58]高壓氣體滲流對裸眼井筒塑性區半徑的影響分析[J].巖石力學與工程學報,2015,34(S2):4286-4294.
[59]鹽膏巖DRA-Kaiser地應力測試方法初探[J].巖石力學與工程學報,2015,34(S1):3138-3142.
[60]超深井側鉆段泥巖井壁失穩分析[J].石油鉆探技術,2014,42(06):53-58.
[61]基于薄板理論的碳酸鹽巖地層壓力檢測方法探討[J].石油鉆探技術,2014,42(05):57-61.
[62]多弱面地層水平井裸眼井壁垮塌量計算模型[J].石油勘探與開發,2014,41(01):102-107.
[63]石膏含量對鹽膏層蠕變速率影響的研究[J].巖石力學與工程學報,2013,32(S2):3238-3244.
[64]水平井造斜段鹽膏層套管等效應力分析[J].鉆采工藝,2013,36(02):87-89+11.
[65]裂縫性儲層裸眼井壁失穩影響因素分析[J].石油鉆采工藝,2013,35(02):39-43.
[66]深部鹽膏巖地層套管磨損后等效應力分析[J].中國石油大學學報(自然科學版),2013,37(01):75-79.
[67]水平井試油過程裂縫性儲層失穩機理[J].石油學報,2011,32(02):295-298.
[68]快速鉆井劑穩定井壁快速鉆進作用機理研究[J].西南石油大學學報(自然科學版),2010,32(01):165-169+205-206.
[69]一種氣體鉆井井壁穩定性分析的簡易方法[J].石油鉆采工藝,2009,31(06):48-52.
[70]一種井漏層位鉆前風險預測新方法[J].石油鉆采工藝,2008(03):24-28.
(二)會議論文:
[1]Analytical model of collapse pressure in fracture zone based on hot dry rock concerning the effect of incompatible deformation[C]//ARMA-CUPB Geothermal International Conference. American Rock Mechanics Association, 2019.
[2]Effect of temperature recovery on time-dependent wellbore stability in geothermal drilling[C]//ARMA-CUPB Geothermal International Conference. American Rock Mechanics Association, 2019.
[3]Experimental Investigation on Mechanical Properties and Failure Mode of Natural Fractured Sandstone[C]//SPE Argentina Exploration and Production of Unconventional Resources Symposium. Society of Petroleum Engineers, 2018.
[4]Optimizing Fluid Production From Porous Media: From Hydraulic Fractures to Plant Roots[C]//ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 2016.
[5]Experiments and Finite Element Simulation on Cement Sheath Failure in HPHT Well Fracturing[C].50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 June, Houston, Texas,2016.
[6]A Quantitative Approach to the Design and Evaluation of Shale Drilling Fluids Based on Multi-Field Coupling Theory[C]//Offshore Technology Conference Asia. Offshore Technology Conference, 2016.
[7]Rock Breaking Model Under Dynamic Load with the Application of Torsional and Axial Percussion Hammer[C]//International Petroleum Technology Conference. International Petroleum Technology Conference, 2016.
[8]Anisotropic wellbore stability model for transversely isotropic formation and its application in drilling through shale formation[C]//SPE Asia Pacific Unconventional Resources Conference and Exhibition. Society of Petroleum Engineers, 2015.
[9]The First Application of Whole Process Underbalanced Drilling in Ultradeep Horizontal Well in Tarim Oilfield[C]//SPE/IADC Managed Pressure Drilling & Underbalanced Operations Conference & Exhibition. Society of Petroleum Engineers, 2014.
[10]Pore pressure prediction in ultra-deep salt formation in Tarim Basin[C]//Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2014.
[11]Study on Nonlinear Large Deformation Measurement and Constitutive Relationship of Mudstone Sidewall 2nd International young scholars’ symposium on rock mechanics,2011, 161-165.
[12]Experimental study of wellbore deformation in a deep claystone formation International Workshop on True Triaxial Testing of Rocks,2011,87-90.
(三)授權專利:
[1]一種能夠誘導本征尖銳裂縫的雙懸臂梁斷裂韌性測試方法[P].CN108333045A,2018-07-27.
[2]一種水泥環氣密封性失效判斷方法[P]. CN107991165A,2018-05-04.
[3]一種多分支孔眼鉆及多孔眼并行鉆進方法[P]. CN106382096A,2017-02-08.
[4]基于地質力學的裂縫型地層定向井造斜方位的設計方法[P].CN105574251A,2016-05-11.
[5]一種預測弱面地層坍塌壓力當量密度窗口的方法[P]. CN104806233A,2015-07-29.
[6]一種裂縫型地層防塌鉆井液性能參數的設計方法[P]. CN104778303A,2015-07-15.
[7]一種油基鉆井液參數的設計方法[P]. CN104732064A,2015-06-24.
[8]一種水溶性無機納米材料的制備方法[P]. CN104692400A,2015-06-10.
[9]一種硬脆性水化泥頁巖人造巖心的制備方法[P]. CN104692726A,2015-06-10.
[10]一種層狀硬脆性泥頁巖水化特性的評價方法[P]. CN104675395A,2015-06-03.
[11]一種層狀硬脆性泥頁巖水化特性的評價裝置[P]. CN104675396A,2015-06-03.
[12]一種高頻動載破巖工具及其使用方法[P]. CN109630010A,2019-04-16.
[13]一種雙懸臂梁斷裂韌性測試裝置[P]. CN108303314A,2018-07-20.
[14]基于旋轉粒子噴射的近井地帶處理裝置[P]. CN205477555U,2016-08-17.
[15]一種利用地質構造面曲率預測區域高壓鹽水層孔隙壓力的方法[P]. CN101942992A,2011-01-12.
[16]一種利用測井資料檢測高壓鹽水層孔隙壓力的方法[P]. CN101936157A,2011-01-05.
[17]一種基于壓裂地質體可壓性的井型設計方法及裝置[P]. CN103390108A,2013-11-13.
[18]一種基于壓裂地質體可壓性的儲層分析方法及裝置[P]. CN103382838A,2013-11-06.
[19]一種利用小波變換計算地層孔隙壓力的方法[P]. CN103089253A,2013-05-08.
[20]一種利用測井資料預測碳酸鹽巖地層孔隙壓力的方法[P]. CN101963056A,2011-02-02.
[21]裂縫性易漏地層堵漏承壓能力評價裝置[P]. CN203570309U,2014-04-30.
[22]井眼徑向變形的測量裝置[P]. CN202170792U,2012-03-21.
承擔項目情況:
[1]深層頁巖水力裂縫閉合的蠕變機理研究,國家自然科學基金面上項目(主持),2019-2021
[2]頁巖油氣高效開發基礎理論研究,國家自然科學基金重大項目(研究骨干),2015-2019
[3]高溫高應力鹽膏層彎曲井筒圍巖失穩機理與控制理論研究,國家自然科學青年基金項目(主持),2013-2015
[4]頁巖粘土礦物表面納米材料改性對井壁穩定作用機理研究,中國博士后科學基金特別資助(主持),2013-2014
[5]超深裂縫性氣藏井筒失穩機理及轉向工藝優化研究,國家油氣重大專項(負責),2016-2019
[6]烏石17-2油田井壁穩定性及鉆井提速技術研究,中海油科技項目(負責),2019-2021
[7]鉆井液穩定井壁的抑制性定量評價新方法,中石油科技項目(負責),2018-2020
[8]克拉蘇構造帶鹽膏層力學機制及蠕變規律系統研究,中石油科技項目(負責),2018-2021
[9]碳酸鹽巖地層漏失預測模型及井下復雜隨鉆診斷系統的研究與開發,中石油科技項目(負責),2018-2019
[10]深層高應力環境下井壁失穩物理模擬實驗與評價研究,中石化科技項目(負責),2019-2020
[11]水基鉆井液耦合下頁巖井筒失穩封堵力學機制研究,中石化科技項目(負責),2019-2020
[12]深水天然氣水合物儲層試采井筒圍巖失穩機理研究,中石油科技項目(負責),2017-2018
科研教學獎勵:
[1]高溫高壓超深復合鹽膏層井筒完整性關鍵技術及工業化應用(1/10),中國巖石力學與工程學會科技進步二等獎,2019年
[2]礦業、石油及安全工程領域優秀青年科技人才提名獎,國家自然科學基金委員會,2018年
[3]深層致密性地層高效儲層改造一體化關鍵技術及應用(3/7),中國產學研創新成果一等獎, 2017年
[4]深層應力敏感性地層承壓堵漏關鍵技術(3/6),中國巖石力學與工程學會技術發明二等獎,2017年
[5]中東富油氣區復雜地層井筒關鍵技術及工業化應用(6/15),中國石油與化學工業聯合會科技進步一等獎,2015年
[6]新疆優秀博士后,新疆維吾爾自治區 ,2012年
[7]氣液介質轉換的井壁失穩機理研究,中國巖石力學與工程學會優秀博士學位論文,2012年
[8]氣液介質轉換的井壁失穩機理研究,中國石油大學(北京)優秀博士學位論文,2012年
社會與學術兼職:
[1] 中國巖石力學與工程學會深層巖石力學與油氣工程專委會秘書長
[2] 國際巖石力學學會會員
[3] SPE(美國石油工程師協會)會員
[4] 中國巖石與工程學會會員
99亚洲综合精品