姓名: 于海洋
職稱: 教授、博士生導師
教育與工作經歷:
2001-2005 大連理工大學 動力工程 本科
2005-2008 清華大學 熱能工程 碩士
2008-2012 美國德州大學奧斯汀分校(UT-Austin) 石油工程 博士
2012-2015 中國石油大學(北京) 講師,校青年拔尖人才
2015-2020 中國石油大學(北京) 副教授
2020至今 中國石油大學(北京) 教授
電子郵箱: haiyangyu.cup@139.com
聯系電話: 010-89733032
所在系所: 石油工程學院、碳中和示范性能源學院
研究方向: 非常規油氣滲流與提高采收率、二氧化碳高效利用及封存
教學情況: 本科課程《油層物理》、《提高采收率》、《氣藏工程》
研究生課程《高等油層物理》
科研教學榮譽獎勵:
[1] 國家級青年人才,2021.
[2] 中國石油和化工自動化行業協會技術發明一等獎,2020(排名第二):致密氣藏非均勻導流能力壓裂井產量和壓力分析技術及應用
[3] 中國石油和化工自動化行業協會科技進步一等獎,2020(排名第八):超低滲油藏動態裂縫模擬與高效排驅關鍵技術及規模應用
[4] 陜西省科技進步二等獎,2020(排名第四):鄂爾多斯盆地西部多層系特低滲油藏高效開發技術突破及規模應用
[5] 中國石油和化學工業聯合會科技進步獎二等獎, 2019(排名第二):超/特低滲透油藏裂縫動態表征與開發調整應用
[6] 中國石油學會石油工程專業委員會,優秀會議論文一等獎, 2018
[7] 中國石油學會海洋石油分會,優秀會議論文獎, 2018
[8] 中國石油學會,第十屆青年學術年會優秀論文特等獎, 2017
[9] 中國石油大學(北京)2020-2022學年度優秀教師,2022
[10] 校級教學成果一等獎,2021、2019
[11] 中國石油工程設計大賽優秀指導教師,2021
[12] 首批國家級一流本科課程《油層物理》,2020
[13] 中國石油大學(北京)科技創新優秀指導教師,2020
[14] 中國石油大學(北京)石油工程學院院長獎-最佳貢獻獎, 2015
[15] 中國石油大學(北京)青年教學骨干教師, 2015
[16] 中國石油大學(北京)青年拔尖人才, 2012
[17] SPE提高采收率年會最佳論文獎, 2010
主持縱向項目(項目負責人):
[1] 中組部國家級人才支撐項目,非常規油氣滲流與提高采收率,2021.12-2026.12
[2] 國家自然科學基金-面上項目,頁巖油注天然氣開發油氣兩相滲流微尺度效應及增油機理, 2021.01-2024.12
[3] 國家自然科學基金-面上項目,致密油藏碳化水驅提高采收率機理研究,2019.01-2022.12
[4] 國家自然科學基金-石油化工聯合基金,致密油藏同井縫間注采機理研究,2018.01-2020.12
[5] 國家自然科學基金-青年基金,含油多孔介質中超磁性納米顆粒的傳遞機理研究,2014.01-2016.12
[6] “十三五”國家科技重大專項子課題,致密油藏碳化水+表面活性劑驅采油技術研究, 2017.01-2020.06
[7] “十三五”國家科技重大專項子課題,分段壓裂水平井油藏工程方法研究,2017.01-2020.12
[8] 國家重點研發計劃子課題,典型行業企業能源管理績效參數指標體系及績效提升途徑研究,2016.07-2018.12
[9] 油氣資源與探測國家重點實驗室基金,二氧化碳提高頁巖油采收率及埋存機理,2021.12-2023.12
[10] 頁巖油氣富集機理與有效開發國家重點實驗室基金,頁巖油CO2吞吐采油技術研究,2018.08-2019.07
[11] ?;?/span>-學院自主項目,微納米孔隙油氣流動微尺度效應,2020.1-2022.12
[12] 校青年拔尖人才基金,超磁性納米顆粒傳遞機理及聚合物驅試井研究,2013.01-2015.12
主持橫向課題(項目負責人):
[1] 盆5井區儲層污染綜合治理技術研究,中石油新疆油田,2022.8-2024.6
[2] 超低滲透油藏注CO2開發技術政策研究,中石油長慶油田,2022.7-2023.12
[3] 超低滲油藏水平井滲流距離測試及壓裂裂縫間距評價優化,中石油長慶油田,2022.7-2022.12
[4] 二氧化碳微氣泡在驅油-封存過程中的溶解動力學和穩定性實驗研究,中石化工程院,2021.9-2022.8
[5] 碳化水強化滲吸置換效率與二氧化碳埋存可行性實驗研究,中石油長慶油田,2021.9-2022.6
[6] 中東油田流體物性實驗、參數測定及水驅油實驗,中石油勘探院,2021.4-2021.12
[7] 侏羅系底水油藏控水材料基礎實驗研究,中石油長慶油田,2021.02-2021.12
[8] 超高壓裂縫性致密揮發油藏早期合理開發技術研究,中石油塔里木油田,2020.10-2023.9
[9] 超低滲-致密油儲層注烴類氣體補充能量方式可行性實驗評價,中石油長慶油田, 2019.08-2020.10
[10] 致密巖心高溫高壓滲吸機理研究,中石油勘探院,2019.10-2020.08
[11] 水平井同井縫間注采可行性研究,中石油大慶油田,2018.11-2019.08
[12] 特低滲氣田滲流機理研究,中海油上海分公司,2015.12-2016.12
社會與學術兼職:
[1] 國家領軍期刊《Petroleum Science》副主編
[2] 中國工程院院刊《Engineering》青年編委
[3] 核心期刊《石油科學通報》執行編委
[4] 國家標準化管理委員會能源管理分技術委員會 委員
[5] 國際標準化組織(ISO)工作組專家
[6] 浙江清華長三角研究院 客座研究員
[7] 中國石油大學(北京)石工學院學術委員會 委員
[8] 中國石油大學(北京)油氣田開發學科學術帶頭人助理
[9] 教育部博士論文評審專家
[10] 國家自然科學基金項目審評專家
[11] 美國石油工程師學會 會員
代表性期刊論文:
[1] Numerical study on natural gas injection with allied in-situ injection and production for improving shale oil recovery. Fuel, 2022.
[2] Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water. Advances in Geo-Energy Research, 2022.
[3] Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure. Fuel, 2021.
[4] Applications of Artificial Intelligence in Oil and Gas Development. Archives of Computational Methods in Engineering, 2021.
[5] Experimental study on EOR performance of CO2-based flooding methods on tight oil. Fuel, 2021.
[6] Three-Dimensional Numerical Simulation of Multiscale Fractures and Multiphase Flow in Heterogeneous Unconventional Reservoirs with Coupled Fractal Characteristics. Geofluids, 2021.
[7] Determination of minimum near miscible pressure region during CO2 and associated gas injection for tight oil reservoir in Ordos Basin China. Fuel, 2020.
[8] Semi-analytical Modelling of Water Injector Test with Fractured Channel in Tight Oil Reservoir. Rock Mechanics and Rock Engineering, 2020.
[9] Feasibility Study of Improved Unconventional Reservoir Performance with Carbonated Water and Surfactant. Energy, 2019.
[10] Application of Cumulative-in-situ-injection-production Technology to Supplement Hydrocarbon Recovery Among Fractured Tight Oil Reservoirs: A Case Study in Changqing Oilfield, China. Fuel, 2019.
[11] Interference well-test model for vertical well with double-segment fracture in a multi-well system. Journal of Petroleum Science and Engineering, 2019.
[12] Interference testing model of multiply fractured horizontal well with multiple injection wells. Journal of Petroleum Science and Engineering, 2019.
[13] Pressure-Transient Analysis of Water Injectors Considering the Multiple Closures of Waterflood-Induced Fractures in Tight Reservoir: Case Studies in Changqing Oilfield China. Journal of Petroleum Science and Engineering, 2019.
[14] A compositional model for CO2 flooding including CO2 equilibria between water and oil using the Peng-Robinson equation of state with the Wong-Sandler mixing rule. Petroleum Science, 2019.
[15] Simulation study of allied in-situ injection and production for enhancing shale oil recovery and CO2 emission control. Energies, 2019.
[16] Analytical interference testing analysis of multi-segment horizontal well. Journal of Petroleum Science and Engineering, 2018.
[17] An Innovative Model to Evaluate Fracture Closure of Multi-Fractured Horizontal Well In Tight Gas Reservoir Based on Bottom-Hole Pressure. Journal of Natural Gas Science and Engineering, 2018.
[18] A Novel Well-Testing Model to Analyze Production Distribution of Multi-Stage Fractured Horizontal Well. Journal of Natural Gas Science and Engineering, 2018.
[19] A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir. SPE Journal, 2017.
[20] The Physical Process and Pressure-Transient Analysis Considering Fractures Excessive Extension in Water Injection Wells. Journal of Petroleum Science and Engineering, 2017.
[21] Semi-Analytical Modeling for Water Injection Well in Tight Reservoir Considering the Variation of Waterflood-Induced Fracture Properties–Case Studies in Changqing Oilfield China. Journal of Petroleum Science and Engineering, 2017.
[22] A Semianalytical Approach to Estimate Fracture Closure and Formation Damage of Vertically Fractured Wells in Tight Gas Reservoir. Journal of Petroleum Science and Engineering, 2016.
[23] Investigation of Nanoparticle Adsorption During Transport in Porous Media. SPE Journal, 2015.
[24] Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Scientific Reports, 2015.
[25] Well testing interpretation method and application in triple‐layer reservoirs by polymer flooding. Materialwissenschaft Und Werkstofftechnik, 2015.
[26] Transport and retention of aqueous dispersions of superparamagnetic nanoparticles in sandstone. Journal of Petroleum Science and Engineering, 2014.
[27] 裂縫性非均質致密儲層自適應應力敏感性研究. 石油鉆探技術, 2022.
[28] 致密砂巖逆向滲吸作用距離實驗研究. 力學學報, 2021.
[29] 碳化水驅提高采收率研究進展. 石油科學通報, 2020.
[30] 致密油藏碳化水驅提高采收率方法. 大慶石油地質與開發, 2019.
[31] 水平井同井注采技術. 大慶石油地質與開發, 2019.
[32] 壓裂水平井裂縫和水平井筒不規則產油試井分析. 大慶石油地質與開發, 2018.
[33] 致密油藏多級壓裂井異井異步注采可行性研究. 石油科學通報, 2018.
[34] 能源管理體系評價指標與應用現狀分析. 中國標準化, 2018.
[35] 致密油藏多級壓裂水平井同井縫間注采可行性. 石油學報, 2017.
[36] 多段壓裂水平井不均勻產油試井模型. 中國石油大學學報:自然科學版, 2017.
[37] ISO50006、ISO50015與ISO50047的比較與探究. 標準科學, 2016.
代表性會議論文:
[1] Application of inter-fracture injection and production in a cluster well to enhance oil recovery. SPE Annual Technical Conference and Exhibition, 2019.
[2] Allied in-situ injection and production for fractured horizontal wells to increase hydrocarbon recovery in tight oil reservoirs: a case study in Changqing Oilfield. International Petroleum Technology Conference, 2019.
[3] A Novel Multi-Well Interference Testing Model of a Fractured Horizontal Well and Vertical Wells. SPE Annual Technical Conference and Exhibition, 2018.
[4] Case Studies: Pressure-Transient Analysis for Water Injector with the Influence of Waterflood-Induced Fractures in Tight Reservoir. SPE Improved Oil Recovery Conference, 2018.
[5] Estimation of Non-Uniform Production Rate Distribution of Multi-Fractured Horizontal Well Through Pressure Transient Analysis: Model and Case Study. SPE Annual Technical Conference and Exhibition, 2017.
[6] A Novel Well Testing Inversion Method for Characterization of Non-Darcy Flow Behavior in Low Permeability Reservoirs. SPE Annual Technical Conference and Exhibition, USA, 2017.
[7] Successful Application of Well Testing and Electrical Resistance Tomography to Determine Production Contribution of Individual Fracture and Water-Breakthrough Locations of Multifractured Horizontal Well in Changqing Oil Field, China. SPE Annual Technical Conference and Exhibition, 2017.
[8] Transport and Retention of Aqueous Dispersions of Paramagnetic Nanoparticles in Reservoir Rocks. SPE Improved Oil Recovery Symposium, 2010.
國家發明專利(排名第1):
[1] 動態滲吸裝置和用于動態滲吸實驗的實驗方法. ZL201811482680.X,2022年授權
[2] 用于確定通過萃取實驗萃取出的油量的方法和裝置. ZL201911215681.2,2020年授權
[3] 高溫高壓條件下強化碳化水的滲吸系統. ZL201711054256.0,2020年授權
[4] 用于確定碳化水驅油過程中碳化水對儲層傷害程度的方法. ZL201910187496.0,2020年授權
[5] 水平井井下氣液分離井上回注采油系統及其方法. ZL201810032101.5,2020年授權
[6] 水平井井下氣液分離回注采油系統及其方法. ZL201810032637.7,2020年授權
[7] 滲吸萃取裝置及滲吸萃取實驗方法. ZL201810980994.6,2020年授權
[8] 高溫高壓條件下碳化水的驅替系統及其方法. ZL201711046782.2,2020年授權
[9] 注水誘發微裂縫二維擴展的物理模擬實驗方法. ZL201710735940.9,2019年授權
[10] 拉鏈式布縫的雙壓裂水平井異井異步注水采油方法. ZL201710078828.2,2019年授權
[11] 對稱式布縫的分組異井異步注CO2采油方法. ZL201710078827.8,2019年授權
[12] 對稱式布縫的異井異步注CO2采油方法. ZL201710078521.2,2019年授權
[13] 多級壓裂水平井縫間間隔CO2驅采油方法. ZL201610564574.0,2018年授權
[14] 多級壓裂水平井縫間間隔注水吞吐采油方法. ZL201610253549.0,2018年授權
[15] 多級壓裂水平井縫間間隔注水吞吐采油方法. ZL201610195661.3,2018年授權
[16] 水平井多參數組合找水測量裝置. ZL201510730997.0,2018年授權
[17] 利用地震縱波傳播時間預測地層孔隙壓力的方法. ZL201510166143.4,2017年授權
起草標準:
國家標準GB/T39532-2020《能源績效測量和驗證指南》
國家標準GB/T39775-2021《能源管理績效評價導則》